

### **Lecture #4 April 26, 2003**

**Isaac Newton 1642-1727** 

Philosophiae
Naturalis
Principia
Mathematica

- 1. Astronomers were doing more than "saving the appearances."
- 2. The same laws of physics operate on Earth as in the heavens.
- 3. The heavens are comprehensible by humans.
- 4. Crystalline spheres, mechanical gears, and other sundry devices were replaced with a simple mathematical force law.
- 5. The physics of Aristotle and the astronomy of Ptolemy were relegated to the dust bin.

## natural motion





in absence of a force, planet would

- 1. slow to a stop?
- 2. continue to orbit?
- 3. fly off in a straight line?



January

June



January











angle = 1/30 of a degree

1 degree = 60 minutes of arc 1 minute of arc = 60 seconds of arc

1/30 of a degree = 2 minutes of arc

resolution of human eye about 1'

D

$$\alpha = \frac{1 \text{ AU}}{D}$$
 radians

$$\alpha = \frac{206,264.8 \text{ AU}}{D}$$

seconds

$$\alpha = \frac{1 \text{ pc}}{D}$$
 seconds

1 pc = 206,264.8 AU = 3.26 light years =  $10^{13}$  (10,000,000,000,000) miles

$$\frac{d}{pc} = \frac{"}{parallax}$$

| star           | parallax<br>(") | distance<br>(pc) |  |
|----------------|-----------------|------------------|--|
| α Centauri     | 0.75            | 1.3              |  |
| Barnard's star | 0.5             | 2.0              |  |
| Sirius         | 0.4             | 2.5              |  |
| Altair         | 0.2             | 5.0              |  |

#### Let's think for a second of arc





$$\alpha = \frac{1 \text{ cm}}{D}$$
 radians

$$\alpha = \frac{200,000 \text{ cm}}{D} \text{ seconds}$$

$$\alpha = \frac{2 \text{ km}}{D}$$
 seconds

| α           | D                  |
|-------------|--------------------|
| 4"          | 1/ <sub>2</sub> km |
| 2"          | 1 km               |
| 1"          | 2 km               |
| 0.1"        | 20 km              |
| 0.01"<br>0" | 200 km infinity    |

# Hipparcos





### **Planet Imager**

### Formation Flying

**Launch: 2030** 

32 X 8 meter mirrors Baseline = 6000 km



| Planet       | angular diameter<br>(in minutes) |      |
|--------------|----------------------------------|------|
|              | Ptolemy True                     |      |
| Mercury      | 2                                | 0.01 |
| Venus        | 3                                | 0.5  |
| Mars         | 1.5                              | 0.15 |
| Jupiter      | 2.5                              | 0.4  |
| Saturn       | 1.7                              | 0.2  |
| Bright stars | 1.5                              | ~0   |

### How far away are stars? How big are stars?

Earth

Both objects have an angular diameter of 3°

30

#### How far away are stars? How big are stars?



#### Both objects have an angular diameter of 3°



200,000 AU =

seconds
parallax





They have different apparent brightness
They have different colors
They move
They change in brightness



### L<sub>THRESHOLD</sub> = energy per second in ear at threshold of hearing

L<sub>PAIN</sub> = energy per second in ear at threshold of pain

```
L_{PAIN}/L_{THRESHOLD} = 10^{12} !!!
                 1-100 (10^2)
               100 - 1,000 (10^3)
            1,000 - 1,000,000 (10^6)
       1,000,000 - 1,000,000,000 (10^9)
  1,000,000,000 - 1,000,000,000,000 (10^{12})
```

|      | log (I/ I <sub>0</sub> ) | $dB = 10 \log (I/I_0)$ |
|------|--------------------------|------------------------|
| 10-2 | -2                       | -20                    |
| 1    | 0                        | 0                      |
| 10   | 2                        | 20                     |
| 10   | 6                        | 60                     |
| 10   | 12                       | 120                    |
| 10   | 20                       | 200                    |

Difference of about 1 dB is the smallest change that can be noticed by the human ear

$$I = \frac{Energy}{Time Area}$$

Energy can be measured in watts Time

Area can be measured in cm<sup>2</sup>

Intensity in watts per cm<sup>2</sup>

$$| = \frac{\text{watts}}{\text{cm}^2}$$

Power (watts) property of source

Intensity depends on power and distance between source and detector

Intensity = 
$$\frac{\text{power}}{4\pi R^2}$$



$$I = \frac{Energy}{Time Area}$$

Energy (Luminosity)
Time can be measured in watts

Area can be measured in cm<sup>2</sup>

Intensity in watts per cm<sup>2</sup>



### Luminosity (watts) property of source

Intensity depends on luminosity and distance between source and detector

Intensity = 
$$\frac{Luminosity}{4\pi R^2}$$

### LET THERE BE LIGHT!

Greeks classified stars into 6 classes, or magnitudes

Brightest stars were 1<sup>st</sup> magnitude Dimmest stars were 6<sup>th</sup> magnitude

Eyes, like ears, are logarithmetic detectors.

Intensity of brightest stars =  $100 \times dimmest$ .

### Some Magnitudes

| Sun  |  | m = -26.8 |
|------|--|-----------|
| Odii |  |           |

Venus 
$$m = -4$$

Sirius 
$$m = -1.5$$

Naked eye limit 
$$m = 6$$

### Our Sun ain't the brightest bulb in the box!

$$L_{SIRIUS} = 25 \times L_{SUN}$$

Intensity = 
$$\frac{Luminosity}{4\pi R^2}$$

For stars we know distance to via parallax:

Measure Distance (R) → Know Luminosity
Measure Intensity

$$\frac{d}{pc} = \frac{"}{parallax}$$

| star           | parallax<br>(") | distance<br>(pc) | apparent<br>magnitude | luminosity<br>(solar) |
|----------------|-----------------|------------------|-----------------------|-----------------------|
| lpha Centauri  | 0.75            | 1.3              | 0                     | 1.5                   |
| Barnard's star | 0.5             | 2.0              | 9.5                   | 0.0005                |
| Sirius         | 0.4             | 2.5              | -1.5                  | 25                    |
| Altair         | 0.2             | 5.0              | 8.0                   | 10                    |

### Intensity = $\frac{Luminosity}{4\pi R^2}$

For stars we know Luminosity:

**Measure Luminosity Measure Intensity** 

**→** Know Distance

### They have different colors

#### **COLORS OF THE RAINBOW:**

ROY-G-BIV



#### Schematic Hertzsprung-Russell Diagram





#### Schematic Hertzsprung-Russell Diagram







